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SUMMARY

Logistic regression is widely used to estimate relative risks (odds ratios) from case–control studies, but
when the study exposure is continuous, standard parametric models may not accurately characterize the
exposure–response curve. Semi-parametric generalized linear models provide a useful extension. In these
models, the exposure of interest is modelled �exibly using a regression spline or a smoothing spline,
while other variables are modelled using conventional methods. When coupled with a model-selection
procedure based on minimizing a cross-validation score, this approach provides a non-parametric, ob-
jective, and reproducible method to characterize the exposure–response curve by one or several models
with a favourable bias–variance trade-o�. We applied this approach to case–control data to estimate the
dose–response relationship between alcohol consumption and risk of oral cancer among African Amer-
icans. We did not �nd a uniquely ‘best’ model, but results using linear, cubic, and smoothing splines
were consistent: there does not appear to be a risk-free threshold for alcohol consumption vis-�a-vis the
development of oral cancer. This �nding was not apparent using a standard step-function model. In our
analysis, the cross-validation curve had a global minimum and also a local minimum. In general, the
phenomenon of multiple local minima makes it more di�cult to interpret the results, and may present
a computational roadblock to non-parametric generalized additive models of multiple continuous expo-
sures. Nonetheless, the semi-parametric approach appears to be a practical advance. Published in 2003
by John Wiley & Sons, Ltd.

KEY WORDS: epidemiologic methods; logistic models; oral cancer; alcohol drinking

INTRODUCTION

In 1973, Seigel and Greenhouse published a seminal paper demonstrating the validity and
usefulness of analysing data from case–control studies using the logistic regression model [1].
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Previously, logistic regression had been used to analyse data from cohort studies and clinical
trials, but the sole method available to estimate relative risks (odds ratios) from case–control
studies dichotomized each risk factor to construct 2× 2 tables relating the dichotomized risk
factor to disease.
Following publication of this work, logistic regression has become a ubiquitous method for

analysing case–control data, and it has been extensively re�ned. In this paper, we describe an
extension of the standard logistic regression model that allows one to analyse the e�ects of a
continuous exposure non-parametrically. In theory, these re�ned analyses are less sensitive to
misspeci�cation of the exposure–response relationship, an issue of concern to epidemiologists
[2, 3]. In a sense, this approach provides the ultimate level of re�nement, because a relative
risk is estimated in a locally adaptive manner for each in�nitesimal increment in exposure.
However, such exquisite re�nement begs the question: Are these advanced methods ‘gild-
ing the lily’ [4]? Standard methods allow one to estimate relative risks within categories of
exposure or, alternatively, to �t smooth parametric curves. Aren’t these models su�cient?
Our interest in non-parametric logistic regression was spurred by substantive epidemiologic

studies conducted by investigators in the National Cancer Institute’s Division of Cancer Epi-
demiology and Genetics. They had completed a series of population-based case–control studies
to help determine why African Americans have a higher risk of certain cancers, including oral
cancers, than Americans of European descent [5]. Although basic patterns of risk could be
discerned using standard methods, the numbers of African American cases were comparatively
small (because the population is smaller), and dose–response relationships were correspond-
ingly less well characterized when the analysis was restricted to them. Furthermore, although
oral cancer is widely perceived to be a disease of alcohol and tobacco abuse, the relative
risks associated with low and moderate levels of exposure remain unclear.
In this paper, we review some modern methods of non-parametric risk regression, and apply

these methods to case–control data to estimate the dose–response relationship between alcohol
consumption and risk of oral cancer in African Americans. Through this example, we hope
to demonstrate that these re�ned analytical methods are worthy of broader application and
continued development, not just because of their statistical elegance, but also because they can
help answer key scienti�c questions [6]. However, as our example illustrates, identi�cation
of the best-�tting model is not automatic, and results from the modelling procedure require
careful interpretation.

MODELS AND DATA

The oral cancer study

The National Cancer Institute’s Oral Cancer Study was a large population-based case–control
study [5]. It enrolled 1065 incident cases of primary oral cancer diagnosed between January
1984 and March 1985 in Los Angeles, Santa Clara and San Mateo California, metropolitan
Atlanta, and the state of New Jersey. Controls were frequency matched to cases by age,
sex and race. The analysis presented here is restricted to the African American arm of the
study (194 cases and 203 controls). The primary exposure measure is the usual number of 1oz
ethanol-equivalent drinks consumed per week as inferred from questionnaire data; this measure
treats 12 oz of beer, 4 oz of wine and 1.5 oz of liquor as equivalent units of exposure. The
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estimates we present are adjusted for sex, quartiles of age (21–48, 49–56, 57–65 and 66–80
years of age) and recent cigarette smoking (non-smoker, 1–19, 20–39, and 40+ cigarettes
per day).

Additive models

Let the 0–1 response variable (case–control status) be Yi ∼ Bernoulli(�i); i=1; : : : ; n, and for
each observation let x′i =(x1i ; : : : ; xpi) be an associated row vector of covariates. A generalized
additive model for �i is

logit �i= �+
p∑
j=1
fj(xji)

where fj(:) are arbitrary smooth functions to be estimated [7]. In principle, the speci�c form
of the fj(:) can be estimated non-parametrically using a cross-validation function. However,
as we will illustrate in Result section, it may be di�cult in general to estimate all of the fj(:)
non-parametrically because the cross-validation function may have multiple local minima [8].
Therefore, a reasonable alternative is to �t a restricted model, called a semi-parametric gener-
alized linear model [9], in which one of the continuous variables, called the splined variable,
is treated non-parametrically, while the other p − 1 variables are modelled using standard
parametric approaches. In our analysis, the number of drinks per week will be the splined
variable, while sex, age group and cigarette smoking will be treated using standard approaches.
Let the splined variable be the pth variable, denoted by t, and let x′0i=(x1i ; : : : ; xp−1; i) be the
remainder. A semi-parametric generalized linear model for �i is

logit �i= x′0i�+ f(ti)

where � is a vector of regression coe�cients and f(t) is an arbitrary smooth function to be
estimated. The intercept � is absorbed into f(t). Although standard methods can be very �ex-
ible when the x0i encode �exible functions of the data, e.g. include linear and quadratic terms,
etc., we treat the splined variable t in a special way to estimate its e�ects non-parametrically.
Spline functions are piecewise polynomials. A spline is de�ned by the order of the polyno-

mial pieces, the set of knots or join-points that de�ne a contiguous set of intervals covering
the domain of the function and the speci�c continuity constraints imposed at each knot. A
rich algebra permits one to construct splines with desirable properties; the classic work of de
Boor presents a general treatment [10]. Hastie and Tibshirani [7] and Green and Silverman
[9] provide lucid developments of spline functions from a statistical perspective.
There are two general approaches to model the e�ects of the splined variable t. One ap-

proach models f(t) as a regression spline, the other as a smoothing spline. Each class of spline
functions has technical strengths and limitations, and we consider them to be complementary.

Regression splines

A large class of regression splines can be represented using B-spline basis functions, and
this basis has computational advantages [10]. However, we can represent the most commonly
used types of splines using a simpler algebra based on truncated polynomials [11]. Let [t0; tk]
cover the range of t, let {t0; t1; : : : ; tk−1; tk} be a non-decreasing sequence of knots, and let
(x)+ = max(x; 0) be the ‘truncation’ function. Typically, the number of internal knots of a
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regression spline is considerably smaller than the number of distinct t-values in the data, and
when k=1 the spline reduces to a simple polynomial. The function

fL(t) = �+ �0 t + �1(t − t1)+ + · · ·+ �k−1(t − tk−1)+
is a continuous piecewise-linear spline for the interval [t0; tk]. The function

fC(t) = �+ �0t + �1t2 + �2t3 + �2+1(t − t1)3+ + : : :+ �2+k−1(t − tk−1)3+
is a continuous piecewise cubic spline for the same interval. The derivative of fL(t) is piece-
wise constant with jumps at {t1; : : : ; tk−1}, while fC(t) is a smooth function—both fC(t) and
its �rst two derivatives are continuous on [t0; tk]. (The third derivative of fC(t) is piece-
wise constant with jumps at {t1; : : : ; tk−1}.) Although not usually thought of as splines, step
functions are also piecewise polynomials.
Standard methods allow one to estimate the parameters of the regression spline if the

appropriate number and location of knots are known a priori. This is rarely the case in
epidemiological investigations. One strategy for model selection puts an increasing number of
knots at successive quantiles of t observed in the control series, e.g. no internal knots, one
internal knot at the median, two at the tertiles, three at the quartiles, etc., up to an arbitrary
maximum. In practice, the maximum value is anywhere from 6 to 10, but it could be more if
the data set supports it. The best-�t model is selected using the Akaike Information Criterion
(AIC) [12], a statistic that is closely related to the cross-validation score [13], which provides
an estimate of the mean squared error of the procedure [14]. One advantage of this approach
is that it is relatively straightforward to implement using standard software packages.

Smoothing splines

Construction of a smoothing spline fS�(t) is more technical. Green and Silverman present
the details [9]. The parameter �¿0 is a ‘tuning parameter’ that will be described below. In
brief, one follows the construction used for the cubic regression splines, but enlarges the knot
sequence so that it includes every distinct observed value of the splined variable t. Next,
one considers the subset of such splines whose second and third derivatives are zero at the
end knots t0 and tk . This subset de�nes the so-called natural cubic splines; the end-conditions
imply that fS�(t) is linear over the two extreme intervals [t0; t1] and [tk−1; tk].
For the semi-parametric logistic regression model, logit �i= x′0i� + fS�(ti), and coe�cients

for the conventional and splined variables can be estimated using a penalized log-likelihood:

‘p(�;fS�)=
n∑
i=1
[Yi[x′0i�+ fS�(ti)]− log(1 + ex

′
0i�+fS� (ti))]− 1

2
�
∫ tk

t0
f′′
S�(t)

2 dt

The standard likelihood is augmented by a roughness penalty that measures the integrated
squared second derivative of the estimated spline. It is a remarkable fact that the minimizer
of this roughness penalty must be a smoothing spline with a knot at each distinct ti, and this
mathematical fact endows the smoothing splines with an explicit optimality criterion. Larger
values of � restrict the �exibility and e�ective degrees of freedom of the estimated smoothing
spline f̂S�(t), while smaller values allow the �tted curve more ‘wriggle room’ to track the
data. As � → ∞, f̂S�(t) approaches a straight-line �t, while as � → 0, f̂S�(t) will attempt to
interpolate the adjusted log odds ratio for cases and controls that share each distinct observed
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value of t (the model may fail to converge for very small values of �). The integral form
of the penalty would appear to introduce computational di�culties, but fortunately one does
not have to use numerical integration. Because f̂S�(t) is a smoothing spline, the penalty can
be expressed as a quadratic form involving �tted f̂S�-values at the knots and a kernel that
depends only on the knots [9, Section 2.1.2].
In the calculations, it is convenient to let f̂S�(t) absorb the model’s intercept, since the

constant term is always in the span of the smoothing spline whatever be the value of �. This
implies that f̂S�(t) models a so-called ‘�oating risk’; the log odds ratio contrasting any two
values of t is estimated by the corresponding di�erence of f̂S�(t)-values [15, 16].
An appropriate value of the tuning parameter is seldom known a priori, but can be estimated

using a cross-validation score to estimate the mean squared error of the procedure. This is
presently a limitation of the approach because it is uncertain what is the best way to de�ne
the appropriate score. Furthermore, the methods proposed to date while reasonable require
extensive programming. We have implemented an approximate generalized cross-validation
score based on a linearized form of the deviance

GCVap(�)=
n∑
i=1
wi
(zi − (x′0i�̂+ f̂S�(ti)))2(

1−
n∑
i=1
Aii=n

)2

where zi and wi are the working response variable and iterative weights at the �nal iteration
of the Fisher scoring algorithm for maximizing the penalized likelihood, and Aii are diagonal
elements of an n× n ‘hat matrix’ that depends on the wi, x0i and ti [9, Sections 4.4 and 5.4].
This expression approximates the weighted sum of prediction errors resulting from leaving
out each observation in turn and predicting its value from the other n− 1 observations.

Model selection

Whichever type of spline is used, the results are most convincing when the model is selected
in a disciplined manner. We recommend that the analyst report the best-�t model, and any
other models corresponding to local minima of the AIC or cross-validation curve, regardless
of whether models based on other knot con�gurations appear to give more plausible curves
than the curve or curves selected by AIC or cross-validation. This does not preclude reporting
these other models as well. However, we feel it is important that the analyst reports the set of
models that provide a similar bias versus variance trade-o�, and also describes the full set of
models considered. Otherwise, the procedure will not be reproducible by other investigators
with similar data sets, and it may be hard for the �eld to reach a consensus.

RESULTS

Figure 1 shows nine linear regression splines for the e�ects of drinks per week on oral cancer
risk among African Americans, and Figure 2 shows nine cubic regression splines �tted to
the same data. Table I shows AIC values for the 18 models presented in Figures 1 and 2.
Figure 3 plots AIC values versus the number of segments for the cubic and linear regression
splines. A cubic spline with two segments (one internal knot at the median exposure observed
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Figure 1. Linear regression spline models of the relationship between alcohol consumption and risk of
oral cancer among African Americans, for models with one–nine linear segments. In each panel, the
x-axis shows the number of 1 oz drinks per week, and the y-axis shows the log odds ratio for each
value of drinks per week relative to non-drinkers. Filled circles show knot locations. Shaded regions

show 95 per cent pointwise con�dence limits.

in the controls) is the best-�tting cubic regression spline among the set of nine cubic splines
considered (Figure 3(a)). However, the AIC curve does not have a convex appearance. The
eight-segment models �t substantially better than models with 7 or 9 segments, although not
quite as well as the two-segment model. Similar results were obtained for the linear splines
(Figure 3(b)): the two-segment linear spline provides the best �t, the eight-segment model
�ts nearly as well, and it appears to be a local minimum in the sense that it �ts substantially
better than models with 7 or 9 segments.
Both approaches suggest that the risk of oral cancer increases most rapidly at low exposures.

This is apparent by inspection of the �tted log odds ratios, which have the greatest slope at
lower compared to higher exposures (Figures 1 and 2). The more �exible cubic spline suggests
that at the highest levels of exposure, the rate of increase of the risk slows. There does not
appear to be a risk-free threshold for alcohol consumption vis-�a-vis the development of this
tumour: none of the curves has a �at trend at lower exposure levels followed by an increasing
trend thereafter.
Figure 4 presents results using the cubic smoothing spline. The GCV score has a global

minimum at 14.3 degrees of freedom and a local minimum at 22.76 degrees of freedom (df)
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Figure 2. Cubic regression spline models for the relationship between alcohol consump-
tion and risk of oral cancer among African Americans, for models with one–nine cubic

segments. See legend to Figure 1 for details.

(Figure 4(a)), including the degrees of freedom used to model sex, age group, and cigarette
smoking. Fitted curves for selected values of � illustrate the increasing �exibility of the �ts
with increasing � values (Figure 4(b)). For the best-�t model, the log odds ratio increases
linearly up to about 45 drinks per week, and then reaches a plateau until 70 drinks per week
(Figure 4(c)); there is a striking increase and decrease in the curve thereafter. This feature
is explicable when one examines the distribution of exposure in cases and controls (Figure
4(d)). Less than 5 per cent of controls (nine individuals) consumed more than 70 drinks per
week, and as a consequence, the curve above this level is di�cult to estimate. The feature
in the �tted curve in this region re�ects the empirical trend in limited data at the highest
exposure levels.
Figure 4(c) also shows 95 per cent pointwise con�dence limits with � �xed at its optimal

value based on the GCV curve. Dashed lines show bootstrap con�dence limits, while the
shaded region shows approximate con�dence limits with zi; wi and � �xed at values from the
�nal iteration of the Fisher scoring algorithm. The approximate limits derive by smoothing
zi on ti with weights wi and applying standard formulae [17]. As expected, the approximate
limits are narrower than bootstrap limits because they do not incorporate uncertainty about �.
However, they are much easier to compute.
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Table I. Akaike information criterion (AIC) values for regression
spline models of the relationship between alcohol consumption

and risk of oral cancer.

Order Number of Deviance∗ Degrees of freedom AIC
segments (df) for spline

Linear spline 1 428.03 1 446.03
2 421.60 2 441.60†

3 420.29 3 442.29
4 418.50 4 442.50
5 417.60 5 443.60
6 417.05 6 445.05
7 415.55 7 445.55
8 410.03 8 442.04
9 414.67 9 448.67

Cubic spline 1 419.77 3 443.77
2 418.45 4 442.45†

3 417.83 5 443.83
4 418.26 6 446.26
5 416.48 7 446.48
6 414.92 8 446.92
7 413.78 9 447.78
8 407.74 10 443.74
9 409.57 11 447.57

∗All models include 1 df for the intercept, 1 df for sex, 3 df for age group, and 3
df for cigarette smoking.
†Best-�t model based on AIC criterion.

Figure 3. Akaike information criterion (AIC) values for cubic (panel a) and linear (panel b) regres-
sion spline models of the relationship between alcohol consumption and risk of oral cancer among

African Americans. See Table I for details.
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Figure 4. Smoothing spline models of the relationship between alcohol consumption and risk of oral
cancer among African Americans. Panel a: generalized cross-validation (GCV) curve. Panel b: Smooth-
ing splines with a low (8.97), optimal (14.3) and high (22.76) number of degrees of freedom. Panel
c: Optimal model based on the GCV curve, anticonservative 95 per cent pointwise con�dence limits
derived using standard formulae (shaded region; see text), and ‘complete’ limits based on the boot-
strap (dashed lines). Panel d: Box plots of the distribution of drinks per week in cases and controls.
In panels b–c, y-axis values represent ‘�oating risks:’ the log odds ratio contrasting any two values
of drinks is found by calculating the di�erence of the corresponding y-values. Spline values above

70 drinks per week are uncertain (see text).

Figure 5 contrasts the best-�tting linear and cubic regression splines and the best-�tting
smoothing spline. Including the covariates age, sex and cigarette smoking, these models had
10, 12, and 14.3 df, respectively. The cubic regression spline does not �t signi�cantly better
than the linear regression spline (deviances of 418.45 with 378 df for error, versus 421.60
with 380 df for error, respectively), and the AIC values are similar, 442.45 versus 441.60,
respectively. The AIC value for the best-�tting smoothing spline (deviance plus twice the
non-parametric degrees of freedom) was also similar, 442.29. The models are statistically
indistinguishable, and from a substantive perspective, the curves are qualitatively consistent.
Each indicates a continuous increase in risk at lower levels of exposure, and none shows
evidence for a threshold e�ect. For comparison, Figure 5 also shows a standard step-function
model with the reference category equal to 0 drinks per week and three exposure steps based
on tertiles of drinks per week in non-abstaining controls. Compared to the spline �ts, the �t
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Figure 5. Comparison of estimates of the log odds ratio characterizing alcohol consumption and risk of
oral cancer among African Americans. The x-axis shows the number of 1 oz drinks per week, and the
y-axis shows the odds ratio for each value of drinks per week relative to non-drinkers on a logarithmic
scale. Curves are shown for the best-�tting linear and cubic regression splines selected by AIC, the
best-�tting cubic smoothing spline selected by GCV, and a standard step function model with three
steps and a reference category of zero. Con�dence intervals are shown for the cubic regression spline.

of this step-function model is poor (deviance of 433.90 with 379 df for error, AIC of 455.90),
and it does not appear to provide a good approximation to the dose–response curve.

DISCUSSION

Logistic regression models have come of age in the years since Seigel and Greenhouse’s
seminal paper. One development is the introduction of spline functions that allow one to
estimate the risks associated with continuous exposures using very �exible models. These
more advanced logistic regression models have been used successfully in diverse applications
[16, 18].
In our example, we saw no ‘safe threshold’ vis-�a-vis alcohol consumption and the risk of

oral cancer among African Americans. This result was not apparent using a standard step-
function model. In general, it may be di�cult to characterize the dose–response relationship
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using a standard categorical analysis that divides exposures into ranges: one will not know
whether a threshold lies hidden within the span of the �rst category, the parameter estimates
may become unstable as the number of intervals increases and the unavoidable jumps in risk
are not biologically plausible. In contrast, in our example, the lack of a threshold in risk at
low exposure levels was consistently observed using linear regression splines, cubic regression
splines and cubic smoothing splines (Figure 5). Each of these risk models is continuous, and
the latter two are smooth. Indeed, perusing Figures 1, 2, and 4, none of the 21 models shown
have a strong indication for a threshold. Our analysis was restricted to African Americans, but
qualitatively similar patterns were observed among cases and controls of European descent
(data not shown).
We have sometimes encountered the sentiment that non-parametric risk regression models

are too sensitive for epidemiologic studies because there may be considerable noise in the
data relative to the signal. We understand this sentiment but take a more optimistic view. Yes,
these methods are very sensitive to the data, but we see this as a plus because the methods
are locally sensitive. For this reason, features such as the unexpected increase and decrease
in risk seen at high exposure levels in Figure 4(c) are informative, and provide us with an
opportunity to better understand both the strengths and limitations of the data. Such a feature
may simply be an artefact of limited data. In general, however, we should strive to keep an
open mind because unexpected results may also be clues.
Two major limitations of non-parametric risk regression models should be noted. Both

re�ect the di�cult nature of model selection. The �rst limitation is computational. The second
more fundamental limitation re�ects the intrinsic indeterminacy of model selection approaches
based on cross-validation.
Our example illustrates that with just one splined variable, the AIC or cross-validation curve

GCVap(�) may have more than one local minimum. This observation suggests that it would be
di�cult to estimate the optimal degrees of freedom for two or more splined variables simul-
taneously, e.g. to minimize a multivariate cross-validation surface GCVap(�1; : : : ; �p), because
results of e�cient numerical algorithms to �nd a minimum will depend on the starting value
that is used. We can a�ord to do a brute-force grid-search for a single tuning parameter, but
the problem becomes exponentially more di�cult as we include more additive components.
Logistic regression models based on the smoothing spline are particularly computer-

intensive, even by today’s standards. Given a �xed �, the penalized log-likelihood is maxi-
mized using a Fisher scoring algorithm that requires 5–7 cycles for convergence. Within each
cycle, parameters for the conventional and splined variables can be estimated using a back-
�tting algorithm [7] that also requires 5–7 cycles for convergence. Within each of these 25–
49 sub-cycles, we are able to estimate the parameters of the smoothing spline in linear O(nt)
time, where nt is the number of distinct values of the splined variable t, using the ingenious
algorithms of Reinsch [19] and Hutchinson and de Hoog [20]. Nonetheless, ideally nt will
be large, namely several score up to a few hundred values, since otherwise this defeats the
purpose of trying to estimate fS�(t) non-parametrically.
To this point we have determined the �t for a single value of �. The entire algorithm

needs to be repeated about 50 times to chart the cross-validation curve and determine its
global minimum. Therefore, this approach requires us to �t about 1250 smoothing splines
(50× 5× 5) during intermediate stages of the procedure. Although each individual smooth can
be done e�ciently, the total amount of computation taxes the capabilities of microcomputers
available in 2002.
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The regression splines are less computationally intensive but have other limitations. First,
conditional on the number of knots in the model, it is unclear whether the results are sensitive
to perturbations of the knot locations. Second, models with relatively few degrees of freedom,
such as the best-�t models selected by AIC in our example, may be sensitive to values of a few
highly leveraged observations. Finally, even with a moderate number of degrees of freedom,
regression splines are less local than smoothing splines with the same df [7, Section 2.8].
However, despite being computationally more tractable, model selection remains an analytical
challenge.
Currently, an objective basis for model selection—such as that provided by AIC or GCV—

derives from the principle of cross-validation. One constructs an estimate of mean squared
error (bias-squared plus variance-squared), and then makes a trade-o� between bias and vari-
ance by minimizing this estimate. Unfortunately, the need to make a trade-o� too often results
in a dilemma. Either AIC or GCV may sometimes present two local minima, as in our anal-
yses based on cubic regression and smoothing splines, and sometimes the two values may be
very similar, as in our analysis based on linear regression splines. This re�ects an intrinsic
di�culty inherent in making a bias–variance trade-o�: a low-bias high-variance model may
have nearly the same AIC or GCV score as a high-bias low-variance model.
How does one deal with this dilemma? A reasonable approach is to present all essentially

equivalent models and possibly, other models that provide a sensitivity analysis, as we have
illustrated in Figures 4 and 5. This provides an objective framework for negotiating the
dilemma, and it is reproducible. However, because there may not be a uniquely best model, it
is doubtful that fully automatic methods will make obsolete the need for skilled data analysis
and careful scienti�c interpretation.
We also believe that an alternative approach to model selection—namely not doing some

sort of cross-validation and relying solely on intuition—is potentially misleading. In our ex-
perience, trying to pick a ‘reasonable’ or ‘plausible’ model is di�cult, and one may spend
considerable e�ort interpreting ‘features’ that turn out to be noise. On balance, we believe
non-parametric risk regression presents a valuable extension of the standard logistic regression
model for case–control studies. However, it is our opinion that the most scienti�cally credible
application of this approach requires a disciplined approach to model selection.
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